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property is exploited to obtain a confidence

max {H(Pl, P2,···, Pn)}:£i ; Pi ; PP

i=1,2, ••• , n = H(Pl, Pl,,,., ~).

reliability function of a series system and

the bounds for the re l iabil i ty funct ion of

rronotone systems exploi t the fact that in

both cases, the maxinun of the reliability

function over a cartesian product region is

achieved at the upper bounds of the

individual arguments (Guerrero and David,• 1985); Le.,

Pavlov (1980) provides sufficient conditions

under which the same type of computation may

be made for functions H that are quasi-convex

whose argunents are parameters of logari th­

mically convex distributions.
~

In this paper, a class of funct ions is

presented for which it is generally less

clear how a reasonable set of initial bounds

that provide an ordering of the sample space

is to be constructed. We then establish an

algorithm that shows that, for a certain

subclass of such functions maximization over

a cartesian product region is attained at a

vertex point of the region; i ve , , the

.. functions maximized at lower and upper

bounds of the arguments of the function. In

this connection, it will be useful to work

with "event tree" representations of systems

and the notion of an "Fr-even t tree". This

by the

trees and

Larrbert,

A1 terna t i ve
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(Barlow and
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(Wong,

diagrams
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interrelated constructs of faul t

2. Event 'frees

Event trees are conveniently portrayed

in terms of the nodes, arcs and branches of

representations

event

a f ini te directed topological tree, as

defined in graph theory (Even, 1973). In

the context of this discussion, direction is

bound procedure for the probabil i ty of

F-tree events that is opt irra l for a

particular class of confidence procedures.

If Buehler bounds for the function are

desired, the bounds provided by this optimal

procedure would be our reccmnended ini t ial

bounds for ordering the sample space.

1975). At any rate, the tree provides a

useful structure for the analysis of the

probability of occurrence of a composite

event of interest, through its inclusion of

all events that contribute to this composite

event.

A time-inclusive representation of a

system in tenns of the elementary events

that contribute to system success is the

circui t

provided by the elapsing of time, each node

represents a canponent of the system (rmre

properly: the utilization of a component),

each arc designates a conponent state and

each branch (i .e., a directed path from the

"Ini t i a l " node of the tree to a "terminal"

node of the tree) traces out a basic event.

It wi 11 be useful to label an arc wi th the

(condi tiona 1) probab i 1i ty of the component

for the
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These tenms are formally defined below.

probability of a basic event, say p(E), will

then be the product of the (conditional)

probabilities along the corresponding branch.

An example of an event tree and some of

the tenninology associated with it is given

in Figure 1. Figure 1 also implicitly

defines the notions of "init ia 1" node and

"t errni na l " node and the "level" of a node.

nbde of an event tree if there is no

(directed) path fran node A to any other

nbde of the tree.

Node A is a t ermi na l~finition 2.2:

~finition 2.3: The length of the path

fran nbde A to node B is the number of arcs

in the path.

This definition implies that the length

of a branch is the number of arcs fran the

initial nbde of the tree to the tenninal

node of the branch.

theit represents;utilization outcome

Node level

Notes:

Figure 2.1. An event tree with six components

1

I
Suppose we dist inguish between only two

states: a canponent ei ther functions or

fails. The event tree, without the arc

labels, for such a system is sometimes

referred to as a binary tree (Horowi tz and

length of the path from the initial node of

the tree to node A.

Thus, the level of the ini t ial node is

N, and there is at leas tone tennina 1 node

of level O.

~finition 2.4: The level of node A is •

given by N-i, where N is the maximum length

of the branches of the tree and i is the

Sahn i , 1978). An example of a binary tree

with seven nodes is shown in Figure 2.

2

o
G
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1. Nbde 1 is the initial node. For binary event trees, let us denote

outcome probabilities by:

2. Nodes 3, 4, 5, and 6 are tenninal nodes.

3. Nbde levels are nurroered starting wi th
o for the last level.

the (cond i t i ona l ) component utilization

•
4. The probability of basic event B is the

product of ach.

initial node of an event tree if there

exists a (directed) path fran nbde A to

every node of the tree.

~finition 2.1: Nbde A is called the

pk = probability that the kth compo­
nent utilization is successful,
given the history of component
utilizations, successes and
failures corresponding' to the
sequence of arcs leading fran
the initial nbde to node k

and

~ = lJPk, k=1,2, ••••n.
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cornposi te event. Let us now consider the

~following maximization problem:

events of which it is the union. Let p =

(Pl,P2,···,Pn) be the vector of

(cond i t i ona l ) probabilities defined above

and let H(p) denote' the probab i li t Y of a

where n is the nurber of corponent

.utilizations (i .e., the nurber of nodes) of

the event tree.

Since the basic events are disjoint, the

probabil i ty of a ccrnposi te event is simply

the stun of the probabi lities of the basic

max {H(p): p £ Q} = max Htp )
Q

(2.1)

In general, it will not be true that the

optirral value of H(p) is attained at a point,

say po, for which Pk is either Ek or Pk for

all k , In the next sect ion, we present a

sub- class of funct ions H(') suggested by

S. Fahrenholtz, for which it is always true

that the solution to the rraximization

problan stated above in Equation 2.1 is

attained at a point po whose argurents are

ei ther the upper or lower bounds for each

Pk as specified in the set Qk.

3. Bounding the Probability of an F-event

3.1 Definition -and Nbtations

Cons ider a - sys ten whose event tree

representat ion is a binary tree. The event

tree for such asystan wi 11 be referred to

as an F-event tree if each (conditional)

utilization outCaTe probability appears

exactly once. By this definition, the event

tree exhibited in Figure 2 is an F-event

trees; on the other hand, the event tree

n

where Q = 1T Ck., Ck. ={Pk: Ek ~ Pk ~ Pk}and
k=l

~ and Pk are lower and upper bounds,

respectively, for Pk' k = l,2, .•• ,n.

exhibi ted

tree. Any

in Figure 3

union of

is

basic

not an F-event

events in an

F-event tree will be referred to as an

F-event .

ocB
HGF

•

• Figure 2. An F-event tree illustration
Figure 3. An event tree that is not

an F-event. tree

3



Finally, note that

•

(3.1 )

(3.2)

max H(p)
0(0)

max H(p)
06

max H(p)

04

= max
04

=max
06

max H(p) = max

0' O'~(O)

max H(p)
0(0)

PlP2(1~4) + QlP3P6

=PlP2 (l ~4) - P3P6 + P3P6

which, are associated with tenninal nodes, do,

not depend on the values of the factors that.

precede them; i.e., their maximizing values

do not depend on values of the state proba­

bilities of the nodes that are on levels 2

and 3. Cbnsider now the iterative evaluation:

Subst i tut ing Equa t ion 3.1 into Equation

3.2 p we may write, with 0(1) =02xQ3:

max H(p) =max PlP2(1~4) + QlP3P6
0 1 O'~l

=max max PlP2(l~) + QlP3P6

0 1 0(1)

= max max PlP20-.E4) + QlP3P6
02 03

=max max PlP20~4) + QlP3P6
Q3 02

=PlP2(1~4) + QlP3P6·

where 0(0) =04xQ6 •. In view of the above

remark concerning P6 and q4' and since q4

and P6 appear in separate terms, we may

write, for all (Pl,P2,P3) in Q].xQ2x03' •

Again, since P2 and P3 both belong to

levelland hence appear in separate terms,

we have:

Since the probabi li ty of a basic event

is the product of (conditional) utilization

outcome probabilities on its associated

branch, and since every branch contains only

one node from each level, each factor in

this product is associated wi th a different

level, with each level between the initial

node and the tenninal node of the branch,

inclusive, contributing a factor to the

product. In addition, every factor ,that

appears in the product appear's only once,

and the probabi li ty of an F-event is

multilinear since it is the sum of such

products.

Let H(p) denote the probabil ity of an

F-event where p is the vector of

(conditional) utilization outcomes of the

components of the F-event tree. The rest of

this section will be devoted.to establishing

an algori thmic solution to the maximization

problem defined in Equation 2.1 when the

objective function H is the probability of

an F-event.

To illustrate what is entailed in

solving this maximization problem, the

following example is given.

Example 1 : Let H(p) =PlPZq4 + qlP3P6.

Since 0 is the cartesian product of the

intervals Ok, the values assumed by each

~ in the region 0 do not depend on the

values assumed by the other arguments. This

is in contrast to the situation where, for

example, 0 = {(PI ,P2): PI + P2 ~ 1 } in which

case the possible values of PI depend on

the values of P2 and vice-versa. Ole

implication of the lack of dependence of the

Ck's is that the maximization of H(p) over

o is equivalent to the maximization of H(p)

over 0'=QlxQ~3xQ4xQ6. Next, note that the

maximizing values of q4 and P6' both of
4



I.~
let

which implies that the value of Pl' say

i + PI, that maximizes H(p) is given by:

Property 3. I : Pk and ~ appear only

in E(k) and both appear as shown in

expression 3.6.

Expressions 3.4 and 3.5 clearly establish

the following:

Property 3.2: N:me of the argiment s in

1T( sj ) and 1T(fk) appear in E' (k ) or 1T(k)

and any p. or q. is a factor in only one
J J

of 1T(k), ~(Sk) or 1T(fk).

Condi t ion I: If k is a tennina I node,

then only one of its states occurs in an

event. 'This is a reasonable condi tion to

impose because if both states of a tenninal

node occur, then expressions 3.4 and 3.5

imply:

H(p) =E' (k) + ~{k)Pk + ~(k)qk

=E' (k) + ~(k),

which indicates that node k is not relevant

to event E since both 1\ and ~ do not

appear in H(p).

We also note that due to the cartesian

product nature of Q, the maximizat~on of

Property 3.3: The argunents Pj

corresponding to nodes tha t are on the sarre

level of the event tree as node k appear

only in E' (k}.

In what follows, we will assume that the

following condition is met:

othe:rwise

IPI

PI =l E.1

3.2 . h1 algori tim for bounding the
probability of an F-Event

Thus H is maximized at interval endpoints

and the proper choice of endpoint is

i tera t ive Iy detennined. These fea tures are

systematically exploited in the algorithm

discussed in the remainder of this section.

The following notations will be helpful:

for a specified event E of an F-event tree,

~(k) =product of (conditional) component

utilization outcome probabilities fran the

:ini tial node to node k;

~ (sk) = product of (conditional)

component uti li zation out come probabi li ti es

of nodes that follow the functioning state

of node k;

n (fk) = product of (conditional)

• component utilization outcome probabilities

of nodes that follow the failed state of

node k;

E(k) =probability of all basic events in

event E that involve node k;

E' (k ) = probabil i ty of all basic events

in event E that do not involve node k. {3.3)

•
Using the above notations, the proba­

bi I i ty of an F-event can be represented by

the decomposition:

maximization of H(p) over the cartesian

product Q' of ~'s that correspond to the

Pk's that actually appear in H(p).

We next establish a series of theorems

and corollaries that provide the algorithmic

solution to the problem of maximizing the

probabi li ty of an F-event over a cartesian

product Q' •

thetoequivalentoverH(p)

(3.4)H(p) =E(k) + E' (k)

o
if both Pk and Ck appear in H

~ (k)Pk (Sk) if only Pk appears in H

and E(k) can be expressed as:

•
5



Theorem 1.: Let k be a tenninal node of

...

vector

Let k be a nontenninal node.•Theorem 2.:

vector PA and depends on the

only through its maximizing value.

Then,

will be helpful:

in either 7T(sk) or n(f k) . We next show

that the value oL ~ that maximizes Hare

obtained independent ly of the values of the

where PA is the vector ,of probabilities

that appear in ei ther 7T(k) or E' (k) and Pa
is the vector of probabilities that appear0.6)

In ei ther

the cartesian

"if CJk appea:r:s in H.

if Pk appears in H

max H(p) =max E' (k ) + 7T (k)P\c*
Q' Q'--(k

either 7T(k)Pk or

case, by Property

product nature of Q', the value of ~ that

maximizes Hover QI is the value of ~

that maximizes Hover Q
k

which is exactly

Proof: COndition 1 implies that E(k) is

an F-event tr~e. Then,

3.6the quantity defined in expression

above. Q.E.D.

The following corollary is implied by

Theorem 1. and Property 3.3 and establishes

max H(p) =max max max H(p~,PA' PB)
QA Ck Q3

= max max H(Pk, PA·' Pe )
QA ~ .

o

case 2. Suppose only ~ appears in H.

Then, using the same arguments as above, we

may wri te:

case 1. Suppose only Pk appears in H.

Then,

•

•

thatofvaluetheis
o

Pa

Proof: We consider three cases.

where

max H(p) =max max max E' (k ) + 7T(k)Pk 7T(Sk)
Q' QA Ck Q3

=max max E' (k ) + 7T(k)Pk ;(Sk)
QA Ck (3.7)

H(p) = E' (k ) + 7T (k)Pk 7T (sk).

By property 3.2, the maximizing value of the

linear product 7T (sk) is obtained indepen­

dently of the values of the p.' s in E' (k)
I

and 7T (k }, N:>w 7T (sk) is the product of

factors Pi or I-Pi for which Pi belong

to PB; hence, the maximizing value of

7T (sk) is attained at sane %; Le.:

maximi zes H.

max H(p) = max max H(pA' Pa)
QI Q'~(O) Q(O)

= max H(PA' PB)
Q'~(O)

o
where Pa is the vector of rraximi zing

values defined in expression 3.6.

In what follows, the following decan­

posi t ion of the vector of probabil it ies p

that the maximizing values of probabil it ies

associa ted wi th t ermi na l nodes are obtained

Independently of each other and of non

tenninal nodes and are attained at the

endpoints of the intervals Ck.

COrollary 1.: Let Q(O) be the cartesian

product of the Ck's corresponding to tenninal

nodes of an F-event tree. Let PA be the

vector of all p.'s corresponding to non-
I

tenninal nodes appearing in eyent E and let

PB be the vector of all Pi's corresponding to

the t ermi na l nodes appearing in event E.

"Ihen ,

6
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•
rrax H(p) =rrax rmx rrax E' (k) + IT (k)~ IT(fk)

QA Ck CB

=rrax rmx E' (k ) + IT(k)~ lTo(fk).
QA Ck (3.8)

Case 3. Suppose both ~ and ~ and ~

appear in H. then,

H(p) = E' (k) + IT (k ) {Pi< IT (Sk) + ~ IT Uk) }

=E' (k ) + n(k) {Pk{IT(sk) - IT(fk)}+ IT(fk)},

(1) Begin by obtaining maximizing values

of p.'s correspoming to tenninal nodes .
1

(2) Find the maximizing values of all

p.'s corresponding to nodes on level r
1

before proceeding to p.' s corresponding to
1

nodes on level r+l.

(3) For each p., the maximizing value
1

is determined by (i), (i t ) and (ii i ) in the

proof of Corollary 2 above.

Property 2.3 implies that the values of

IT (Sk am IT (fk) that maximize Hare

• obtained independently of the values of Pk

and PA and are attained at sore pi;
hence, we may wr i te ,

4. Same Generalizations Concerning Event Tree
Probability FUnctions

4.1 Characterizing the probability
of an F-event

, Q.E.D.

Theorem 1 establishes the result. Suppose k

=max rrax E' (k ) + IT(k) {Pi< {ITO(Sk)
QA Ck

depends on
(n)

p only

in a sequence,
(n)

p

IT ~ = 7T \Pk 'fSk].
k=l k=l

(2) H is multilinear in its arguments Pk.

(3) It is possible to arrange the argu-
(1) (2)

say p , p , ••• ,

such that the iterative

over Q creates a conditional maximization

tor the argument p (k ) that can be carried

out independent ly of the "prior" arguments
(1) (k-l)p through p . and that

(k+1 )
the argunents p through

through their maximizing values .

(4) H attains its rmximum at a vertex of Q

maximization of this multilinear function

'The essential f~tures of the probability

H(p) of an F-event may be sumnari zed as

follows:

(1) H is defined on a cartesian product

ments
(k)

p , ••• ,

Q1.e may give up' (2) and still have the

important property (3), except that (4) will

no longer neceasar i l y obtain. Also, it is

equally true that one can lose the cri tical

property (3) yet keep (2) and (4). The

re l iabi l i ty funct ion of a k-out-of-n system

is an example of such a function •

A function that satisfies the properties

enumerated in (1) through (4) above will be
7

If k is a t ermi na l node, thenProof:

max H(p) = rrax rrax rrax E' (k ) + n(k)
Q' QA Ck CB

+ IT(k){Pi< {IT(Sk)-IT(fk) } + IT(fk)}

Corollary 2.: The maxirrnrn value of H

over the cartesian product Q' is attained at

. ° (0 ° 0) f whi h 0'a po1nt p = PI' P2,···,Pn or 1C Pk 1S

either Ek or Pk..

JPi<
if ITo (Sk) ~ ITo Uk)

° =Pk
IEk otherwise

Q.E.D.

• We can sumnarize the algorithmic

procedure as follows:

is a nont errni na l node. 'Then, Equations 3.7

through 3.9 in the proof if 'Theorem 3.6.. above imply that:

i) if only ~ appears in H, then Pk =~,
ii) if onl y ~ appears in H, then P~ =~,

iii) if both ~ ane ~ appear in H then,



distinct; i s e , , the probabilities associated

wi th two or more nodes of the event tree are

referred to as an F-function. If H is an

F-function, property 4 implies that the

maximization problem: equal. If the event E involves nodes that •
have the same utilization outcome probabili­

ties then, the problem of bounding H(p) over

a cartesian product Qmay be expressed as:

rrax {H(p):. Ek ~ Pk ~ ii, k =1,2, ••• ,n}

is equivalent to the discrete maximization

problem

rrax H(p): Pk e: {Ek, Pic} , k =1, 2, ••• , n •

In other words, one may view the region of

optimization as the set of 2
n points

maximi ze H(p)

subject to: same Pi's are equal

p e Q.

(4.2)

•
S.by

use the

equal i ty

outpointed

one proceeds to

ignores the

asHowever,

4.3 ~tended F-event trees

Fahrenholtz, if

algorithm and

constraint, this would provide a solution to

the unrestricted version of the programning

problem stated in (4.2) above, and hence an

upper bound for its optimal objective

funct ion.

Hence, the algori thm established in Section

3 does not provide a solution to this

maximization problem.

is

(4.1 )

p.
1

which

for k=l, 2, •'•• , 2n•

for

if Pi =Ei

if Pi = Pi.

£i < Pi < 1
= =

o ~ Pi ~ Pi

(PI' P2' ••• , pn)

either E. or p. for i = 1,2, ••• ,n. Each
1 1

one of these 2
n

points may be associated

with a cartesian product region with sides:

say P(k),

or . [0, Pi] tha t minimi zes :

max {H(p): p e: p(k)}

Hence, this maximization problem may also be

interpreted as finding the region belonging

to ·the set of 2 cartesian product regions,
n

whose sides are either [Ei,l I

To verify that this interpretation is valid

note that if H attains its maxirram value

over Q at Ei for the argunent Pi and

p (k) includes the side [a,p.] instead of
1

Pi' 1 J, then the maximum of Hover pfk )

wi 11 be larger than the optimal solution.

Similarly, if H attains its maxirrum value

over Q at p. for the argument P. and
1 1

ptk ) includes the side [Pi' 1] instead of

~'Pi ], then the maxirrun of Hover p (k )

will be larger than the optimal solution.

4.2 Restricted maximization for event tree
probability functions

Suppose that the utilization outcome

probabilities of an event tree are not all

We now introduce the notion of an

extended F-event tree. Suppose the canpo­

nents of a system can assune more than two

states. Then, for each component utilization,

we have a vector Pk = (Pkl' Pk2 •... '~ ) of

(conditional) canponent utilization outcome

probabilities. Here, "k is the mrnber of • i>

states that the corrponent at node k can

assume, Pkj is the (conditional) utiliza-

tion outcome probability that state j occurs
mk

at node k and L Pk' = 1 for all k , The
;=1 1...

event tree for such a system will be referred

to as an extended F-event tree if each Pki

appears exactly once. ~

If E is an event of an extended F-event •

tree, then the probability of event E can be

8
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• max H(p) = max max E' (k)
Q (Xk Ck

where nO(skj) is the value of n(skj) that

maximi zes H.

NOw consider the conditional maximization

over~. Clearly, the value of 1\. that

maximizes H can be obtained independently of

the values of the arguments that appear in

• E' (k) and 1T(k). Bence , the solut ion to this

conditional maximization problem is provided

by the solution to the progr~ing problem:

max

•

r1lk
subject to: E Pk· = 1

j =1 J

Pkj e: Ck, j=1,2"",lTk'
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