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EVENT TREE FORMULATION OF SYSTBM RELIABILITY

Margarita F. Guerreroy

1. Introduction

Buehler's "initidl" bounds for the
reliability function of a series system and
the bounds for the reliability function of
monotone systems exploit the fact that in
both cases, the maximum of the reliability
function over a cartesian product region is
the upper the

(Guerrero and Iavid,

achieved at bounds of
individual

1985); i.e.,

argurments

max {H(p), P2s+++» Pn)}:Pi < Pi 2 Pij

A

i=1,2,000'n =H(§l’ pz,"’) p_l’l)0

Pavliov (1980) provides sufficient conditions
under which the same type of computation may
be made for functions H that are QUasi-convex
whose arguments are parameters of logarith-
mically convex distributions.

In this paper, a class of functions is

presented for which it 1is generally less
clear how a reasonable set of initial bounds
that provide an ordering of the sample space
We then establish an

that,

is to be constructed.

algorithm that shows for a certain
subclass of such functions maximization over
a cartesian product region is attained at a
the the
upper

bounds of the arguments of the function. In

vertex point of region; i.e.,

functions paximized at lower and

this connection, it will be useful to work
with "event tree" representations of systems
This

confidence

and the notion of an "F-event tree'".

property is exploited to obtain a
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for the
that is

bound procedure probability of

F-tree events optimal for a
particular class of confidence procedures.
If Buehler the

desired, the bounds provided by this optimal

bounds for function are

procedure would be our recommended initial

bounds for ordering the sample space.

2. Event Trees

A time-inclusive representation of a

system in temns of the elementary events
that contribute to system success is the
event tree (Wong, 1984). Alternative

representations are provided by the
interrelated constructs of fault trees and
(Barlow Lambert,
At any rate, the tree provides a
the
composite

through its inclusion of

circuit and
1975).

useful

diagrams
structure for the analysis of
probability of occurrence of a
event of interest,
all events that contribute to this composite
event. '
Event trees are conveniently portrayed

in terms of the nodes, arcs and branches of
a finite directed

defined

tree, as
1973)4 In

the context of this discussioﬁ, direction is

topological
in graph theory (Even,
provided by the elapsing of time, each node
represents a camponent of the system (more
properly: the utilization of a component),
each arc designatés a component state and
each branch (i.e., a directed path from the
"initial"™ node of fhe tree to a "terminal"
node of the tree) traces out a basic event.
It will be useful to label an arc with the

(conditional) probability of the camponent




utilization outcome it represents; the

probability of a basic event, say p(E), will
then be the product of the (conditional)
probabilitiss along the corresponding branch.

An example of an event tree and same of
the terminology associated with it is given

in Figure 1. Figure 1 also implicitly

node and

of a node.

defines the notions of "initial"
node and the

These terms are formally defined below.

"terminal® "level"

Node Level

Figure 2.1. An event tree with six components
Notes:

1. Node 1 is the initial node.
" 2. Nodes 3, 4,

5, and 6 are terminal nodes.

3. Node levels are nurbered starting with
0 for the last level.

4. The probability of basic event B is the
product of ach.

Definition 2.1: Node A is called the

initial node of an event tree if there

exists a (directed) path from node A to

every node of the tree.

2

Definition 2.2: Node .A is a terminal
node of there 1is no
(directed) path from node A to any other

node of the tree.

an event tree if

Definition 2.3: 'The length of the path

fron node A to node B is the nurber of arcs

in the path.

This definition implies that the length
of a branch is the nurber of arcs from the
node of the tree
node of the branch.

initial to the terminal

Definition 2.4: 'The level of node A is

given by N-i, where N is the maximum length
of the branches of the tree and i is the
length of the path from the initial node of

the tree to node A.

Thus, the level of the
N, and there

initial node is
is at least one terminal node

of level 0.

Suppose we distinguish between only two’

states: a camponent either functions or
fails. The event tree, without the arc
labels, for such a system 1is sometimes

referred to as a binary tree (Horowitz and
Sahni, 1978).

with seven nodes is shown in Figure 2.

An example of a binary tree

For binary event trees, let us denote

the (conditional) component utilization

outcome probabilities by:

probability that the kth compo-
nent utilization is successful,
given the history of component
utilizations, successes and
failures corresponding - to the
sequence of arcs leading fram
the initial node to node k

and

1-pk, k=1,2,...,n,




the number of component
®utilizations (i.e., the number of nodes) of

where n s

the event tree.

Since the basic events are disjoint, the
probability of a composite event is simply
the sum of the probabilities of the basic
events of which it is the union. Let p =
(pl’pZ""'pn) be the vector of
(conditional) probabilities defined above
and let H(p) denote ‘the probability of a
composite event. Let us now consider the

gfollowing maximization problem:

max {H(p): pe Q }=max H(p) (2.1)
Q
n —_—
where Q= 7 Q, Qc = {Pk: Pk < Pk < Pkrand
k=1

p, and Ek are lower and upper bounds, -
respectively, for P k=1,2,...,n.

¢

& Figure 2. An F-event tree illustration

In general, it will not be true that the

optimal value of H(p) is attained at a point,

say p°, for which p& is either Py or By for
all k.

sub- class of functions H(*) suggested by

In the next section, we present a

S. Fahrenholtz, for which it is always true
that the solution to the maximization
problen stated above in Equation 2.1 s
attained at a point P° whose arguments are
either the upper or lower bounds for each

P, as specified in the set C&.

3. Bounding the Probability of an F-event

3.1 Definition and Notations

]

Consider a  system whose event tree
representation is a binary tree. The event
tree for such a 'system will be referred to

as an F-event tree if each (conditional)

utilization outcome

probability appears

exactly once. By this definition, the event
tree exhibited in“Figure 2 is an F-event
trees; on the other hand, the event tree
exhibited in Figure 3 is not an F-event
tree. Any union of basic events in an
F-event tree will be referred to as an

F-event.

Figure 3. An event tree that is not
an F-event tree



Since the probability of a basic event
is the product of (conditional) utilization
outcome probabilities on its associated
branch, and since every branch contains only
one node from each level, each factor in
this product is associated with a different
level, with each level between the initial
node and the terminal node of the branch,
factor to the

inclusive, contributing a

product. In addition, every factor that
appears in the product appears only once,
and the probability of

multilinear since it is

an F-event |is

the sum pf such

products.

Let H(p) denote the probability of an
F-event where p is the vector of
(conditional) wutilization outcanes of the

components of the F-event tree. The rest of
this section will be devoted. to establishing
an algorithmic solution to the maximization
problém defined in Equation 2.1 when the
objective function H is the probability of
an F-event.

entailed in

To illustrate what is

solving this maximization problem, the

following example is given.

Example 1 : Let H(p) = p;p,q, + q;P3Pg-
Since Q is the cartesian product of the
intervals Qk’
Py in the region Q do not depend on the
This

to the situation where, for

the wvalues assumed by each

values assumed by the other arguments.
is in contrast
example, Q = {(p;,p,): p; *+ p, <1} in which
case the possible values of P, depend on
the values of P, and vice-versa. ne
implication of the lack of dependence of the
Q's is that the maximization of H(p) over
Q is equivalent to the maximization of H(p)
over @ =leQ2xQ3xQ4xQ6. Next, note that the

maximizing values of q, and py» both of
4

which are associated with temminal nodes, do

not depend on the values of the factors that

‘ ¢
precede them; i.e., their maximizing wvalues
do not depend on values of the state proba-
bilities of the nodes that are on levels 2
and 3. Consider now the iterative evaluation:
max H(p) = max max H(p) (3.1)
(0) _ :
where Q = 4be. ~ In view of the above
remark concerning P and Ay and since qy
and P, appear in separate terms, we may
write, for all (pj,p2,p3) in QixszQ3, M
max H(p) = max max H(p)
0(0) Q4 Qe
= max max H(p)
Qb Q4
= P1p2(1-p4) + q1p3P6 (3.2)
Substituting Equation 3.1 into Equation
3.2, we may write, with Q1) = Qux(3:
'
max H(p) = max pypa(1-p4) + q1p3pe
Q Q' -Q
= max max p;p,(1-py) + qpspy -
Again, since p, and p3 both belong to
level 1 and hence appear in separate terms,
we have:
max p p,(1-py) + q)p3Py
Q(O) ' o
= max max p;pz(1-p4) + q1p3pe
QR O
. = max max p1pa(1-ps) + q1P3P6
Q3
= P1p2(1-p4) + q1P3p6-
'Finally, note that
P1p2(1-p4) + q1P3P6 ‘.

= p1p2(1-p4) - p3p6 + P3P6



which implies that the value of Py» say

| « Pl that maximizes H(p) is given by:
]

©

| P1 if p2(1-p4) = P3Ps
Pl =
p1 otherwise
Thus H is maximized at interval endpoints
and the proper choice of endpoint is

iteratively determined. ‘These features are
systematically exploited in the algorithm
discussed in the remainder of this section.

The following notations will be helpful:
for a specified event E of an F-event tree,
let

m(k) = product of (conditional) component
utilization outcome probabilities from the
dinitial nodé to node k;

ul (sk) =

component utilization outcame probabilities

product of (conditional)
of nodes that follow the functioning state
of node k;

m (fk) = product of (conditional)
component utilization outcame probabilities
of nodes that follow the failed state of
node k;

E(k) = probability of all basic events in
event E that involve node k;

E'(k) = probability of all basic events

in event E that do not involve node k. 713.3)
3.2 An algorithm for bounding the
probability of an F-Event
Using the above notations, the proba-

bility of an F-event can be represented by
the decamposition:

H(p) = E(k) + E' (k) (3.4)

and E(k) can be expressed as:
™ (k) pkmisk) + qmlfk)
0
if both px and g appear in H

m (K)pk (sk) if only px appears in H

n(k)gk™(fx) if only gk appears in H. (3.5)

Expressions 3.4 and 3.5 clearly establish
the following:

Property 3.1: Py and 4 appear only
in E(k) and both

expression 3.6.

appear as shown in

Property 3.2: None of the arguments in
T(sy) and TT(fk) appear in E'(k) or (k)
and any pj

or q]. is a factor

of m(k), m(sk) or m(fk).

in only one

3.3: The

corresponding to nodes that are on the same

Property

arguments pj

level of the event tree as node k appear
only in E' (k).
In what follows, we will assume that the

following condition is met:

Condition 1:
then only one of
‘This
impose because if both states of a terminal
3.4 and 3.5

If k

its states occurs

is a teminal node,

in an
event. is a reasonable condition to

node occur,
imply:
H(p)

then expressions

E' (k) + n(k)p, + Tk)g,
E! (k) + W(k):

which indicates that node k is not relevant

to event E since both P and 9 do not
appear in H(p).

We also note that due to the cartesian
product nature of Q,
H(p)

maximization of H(p)

the maximization of

over Q is equivalent to the
the cartesian
product Q' of q(' s that correspond to the

P 's that actually appear in H(p).

over

We next establish a series of theorems
and corollaries that provide the algorithmic
solution to the problem of maximizing the
probability of an F—event over a cartesian
product Q'.




~

Theorem 1l.: ILet k be a terminal node of
an F-event trze. 'Then,
max H(p) = max E'(k) +r (k)p*
Q Q-
where
Pk if px appears in H (3.6)
Pk* =
l-px  if gk appears in H.
Proof: Condition 1 implies that E(k) is
either TT(k)pk or TT(k)qk. ~ In either
case, by Property 3.1 and the cartesian

product nature of ', the value of Py that
maximizes H over Q' is the value of Py

that maximizes H over Qk which is exactly

the quantity defined in expressibn 3.6
above. Q.E.D.
The following corollary is implied by

Theorem 1. and Property 3.3 and establishes
that the maximizing values of probabilities
associated with terminal nodes are obtained
‘1independently of each other
nodes

endpoints of the intervals Q.

and of non

terminal and are attained at the

Corollary 1l.: Let Q(O) be the cartesian
product of the Qk's corresponding to terminal
Let P, be the

A
vector of all pi's corresponding to non-

nodes of an F-event tree.

terminal nodes appearing in event E and let
pg be the vector of all pi's corresponding to

the terminal nodes appearing in event E,

“Then,
max H(p) = max max H(p,, )
, (0 o) A B
Q Q-Q Q
= max H(p,, py)
QI—Q(O)
where p}; is the vector of maximizing

values defined in expression 3.6.

In what follows, the following decaom-

position of the wvector of probabilities p

6

will be helpful:

P = (Pk» pa» PB)

where Py is the vector .0of probabilities

that appear in either (k) or E'(k) and Pg

is the vector of probabilities that appear

in either n(sk) or Tr(f,,). We next show
that the wvalue of/pk that maximizes H are
obtained independently of the values of the
vector N and depends on the vector Pg

only through its maximizing value.

lheorem 2.: Let k be a nonterminal- node.
Then,
max H(p) = max max max H(pk’p/\’pB")
A A B
= max max H(pg, Pps P )
Qa A T
where pg is the value of pg that

maximizes H.

Proof: We consider three cases.

Case 1. Suppose only P, appears in H.
Then,

H(p) = E' (k) + n(k)pk Tr(sk).
By property 3.2, the maximizing value of the
linear product T (sk) is obtained indepen-
dentlylof the values of the p.'s in E' (k)
and T(k). Now Tr(sk) is the product of
factors p; or l—pi for which P, belong

hence, of

to  pg;

TT(sk) is attained at some pg; i.e.:

the maximizing value

max H(p) = max max max E'(k) + n(k)px m(sy)

o A & B
= max max E'A(k) + m(k)pg T:(sk)
A X (3.7)

Case 2. Suppose only qy appears in H.
o

Then, using the same arguments as above, we

may write:

e

3

N\



max H(p) = max max max E'(k) + 7(k)qg 7(fy)

A Xk B
&
= max max E'(k) + 7 (k)q "(fk).
QA (3.8)
Case 3. Suppose both P and % and %
appear in H, then,

H(p) = E' (k) +7 (k) {pk " (sp) + qe 7 (f) }
= E' (k) + (k) {pk{n(sk) - n(fx) 1+ mfy)},

Property 2.3 implies that
(s

( i, and T (f) that
obtained independently of the values of P

the values of
maximize H are

[+}

and Py and are attained at = some Pps

hence, we may write,

max H(p) = max max max E' (k) + (k)
Q Qa &k B

+ (k) {p {M(sp) = T(fge) } + M) )

= max max E'(k) + T(k) {px {n°(sy)
QA

- Mo(f) } + To(fy)} (3.9)

. Q.E.D.

The maximum value of H

Corollary 2.:

over the cartesian product Q' is attained at
3 O wm (] o] o] 1 o 3
a point p°= (pl, pz,...,pn) for which p? is

either px or pk.
Proof: If k

Theorem 1 establishes the result.
‘Then,

is a termminal node, then
Suppose k
Equations 3.7

if Theorem 3.6

is a nonterminal node.
through 3.9 in the proof
® apove imply that:
i) if only P, aPpears in H, then p]‘; = Py»
ii) if only q appears in H, then pl‘; = Py»
iii) if both P, ane q appear in H then,

o

Py =

lpk if TO(sy) > n°(fg)
| B

otherwise
Q.E.D.

® We can

procedure as follows:

surmmarize the algorithmic

(1) Begin by obtaining maximizing values
of pi's correspording to termminal nodes,

(2) Find the maximizing values of all
level r

corresponding to nodes on

P;'s
before proceeding to pi's corresponding to
nodes on level r+l.

(3) For each p;» the maximizing value
is determined by (i), (ii) and (iii) in the

proof of Corollary 2 above.

4. Some Generalizations Concerning Event Tree
Probability Functions

4.1 Characterizing the probability
of an F-event
The essential features of the probability
H(p) of an F-event may be surmarized as
follows:
(1) H is defined on a cartesian product
T Q= 7 [Pk
k=1 k=1
(2) H is multilinear in its arguments P+

(3) It is possible to arrange the argu-

: | C (1) (2)
ments 1n a sequence, say P y P peeey
(k) (n) . :
P “seees P s such that the iterative
maximization of this multilinear function

over Q creates a conditional maximization

(k)

for the argument p that can be carried
out independently of the "prior" argurments
p(l) through p(k_l) and that depends on
the arguments p(k+l) through p(n) only

through their maximizing values.
(4) H attains its maximun at a vertex of Q
One may give up (2) and still have the
important property (3), except that (4) will
no longer necessarily obtain. Also, it is
equally true that one can lose the critical
(2) and (4). ‘The

reliability function of a k-out-of-n system

property (3) yet keep

is an example of such a function.
A function that satisfies the properties

enurerated in (1) th,‘rough (4) above will be
7



If H is an
implies that the

referred to as an F-function.,

property 4

maximization problem:

F-function,

max Hp): px <pxc <P k =1,2,...,n}
is equivalent to the discrete maximization
problem 4
max H(p): pk ¢lpxs P} s k =1,2,000, n

In other words, one may view the region of
optimization as the set of 2

(Plo PZ:---.
either p; or F_)i for i = 1,2,...,n. Each

points
pn) for which p, s
one of these 2" points may be associated

with a cartesian product region with sides:

Bi <Pi <1 if pj = pij

- (4.1)
0<pi £Pi if pi = pi.

Hence, this maximization problem may also be
interpreted as finding the region belonging
to -the set of Zn cartesian product regions,
say P(k),

or “[0,pj] that minimizes:

whose sides are either [Ei,l ]

max {H(p): p ¢ p(k)} for k=1,2,...,20,

To verify that this interpretation is wvalid

note that if H attains its maximum wvalue

over Q at p, for the argument p; and
p(k) includes the side [O,pil instead of
E)i,l :l, then the maximum of H over p(k)
will be larger than the optimal solution.
Similarly, if H attains its maximum value
Q at P; for the argument Pi and

p(k) includes the side [pi,l:[ instead of

over

@,pi :[, then the maximum of H over p(k)

will be larger than the optimal solution.

4.2 Restricted maximization for event tree
probability functions

Suppose that the wutilization outcome

probabilities of an event tree are not all

8

distinct; i.e., the probabilities associated
with two or more nodes of the event tree are
equal. If the event E involves nodes that
have the same utilization outcome probabili-
ties then, the problem of bounding H(p) over

a cartesian product Q may be expressed as:

maximize H(p) (4.2)

subject to: some pj's are equal
p € Q.

Hence, the algorithm established in Section

3 does not provide ‘a solution to this
maximization problem.
However, as

Fahrenholtz,

pointed  out by S.
if one proceeds to use the

algorithm and ignores the equality
c;onstraint, this would provide a solution to
the unrestricted version of the prograrming
problem stated in (4.2) above, and hence an
upper

function.

bound for its optimal objective

4,3 Extended F-event trees

We now introduce the notion of an

extended F-event tree. Suppose the campo-

nents of a system can assume more than two

states. Then, for each component utilization,

we have a vector P = (pkl’ ) NPRRRR ) of
(conditional) component utilization outcome

probabilities. Here, m is the number of

states that the component at node k can

assume, pkj is the (conditional) wutiliza-

tion outcome probability that state j occurs
m
k

at node k and " p .
=1 ki

]

-

event tree for such a system will be referred

= 1 for all k. 'The

to as an extended F—event tree 1if each pki
appears exactly once,

If E is an event of an extended F-event

| tree, then the probability of event E can be




expressed as:
H(p) = E' (k) + m(k) 121 Pkj ™(skj)
Je

where E'(k) and r(k) are the quantities
defined in (2.5), ﬂ(skj) is the product of
all  (conditional)

outcome probabilities

coamponent utilization

of nodes that are
involved in event E and that follow pk]. in
the tree, and I is the index set of all
states of node k that occur in event E,

The following theorem is the analogue of
Theorems 1 and 2 as applied to extended
F-event trees and may be established in a
manner similar to the proofs of the later
two theorems.

Theorems 3.: Let Q be the cartesian
product of regions Qk for which P € Qk’

k =1,2,...,n. Let H be the probability of

an event E of an extended F-event tree.
Then,
max H(p) = max max E'(k)
Q Ok
+ (k) % pkjn(ski)
. ] ]
jel

where 1r°(skj) is the value of w(skj) that
maximizes H.
Now consider the conditional maximization

over Qk'

maximizes H can be obtained independently of

Clearly, the wvalue of P that

the values of the arguments that appear in
E' (k) and (k).

conditional maximization problem is provided

Hence, the solution to this

by the solution to the programming problem:

max T n°(syi)pig

j el
. 'Tk -
subject to: I Pkj = 1
j=l
pkj EQ(’ j=l,2’ou-,rrko

Guerrero, M.F. and H.T. David, 1985.
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